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TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON

1. INTRODUCTION

It has been suggested' 2A that the current carrying capacity of a conventional betatron accelerator

might be improved dramatically by the addition of a strong toroidal magnetic field. Such a field acts to

confine the beam during injection and early stages of acceleration when y, the usual relativistic factor,

is small and space charge effects which tend to expand the beam are large. After acceleration is com-

plete, y is large, space charge effects are small, and the usual weak focussing betatron fields are

sufficient to confine the beam; the toroidal field may then be removed to facilitate beam ejection. In

general both vertical and toroidal magnetic fields may be changing simultaneously during beam injection

and ejection. It is the purpose of this paper to examine the behavior of the beam in such time-varying

fields.

We shall derive and solve equations governing the motion of the center of an electron beam

confined in a modified betatron as well as equations governing the motion of an individual particle

within the beam. Whole beam and single particle stability criteria will be presented; the stabilizing

effect of the toroidal field for both beam and single particle motions, noted earlier,' will be apparent.

When the fields are allowed to vary in time two interesting phenomena occur. The first

phenomenon, which occurs during acceleration, has no analogue in a conventional betatron: As the

beam accelerates (vy increases) the betatron makes a transition from a region in parameter space in

which the toroidal field is essenial to stability (modified betatron regime) to a region in which the

toroidal field is superfluous to stability (conventional betatron regime). It turns out that, except under

extraordinary circumstances, the system must pass through an "instability gap"-a region of parameter

space, separating the modified and conventional betatron regimes, in which single particle motion is

Manuscript submitted December 17, 1981.
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unstable, though beam center motion may not be, irrespective of the magnitude of the toroidal magnetic

field. However, though the size of the instability gap is independent of the toroidal field, the instability

growth rate within the gap is inversely proportional to this field. We find below that by judicious mag-

net design and sufficiently rapid acceleration, this gap may be successfully traversed with minimal beam

disturbance.

The second phenomenon occuring in time varying fields does have an analogue in a conventional

betatron; this is the adiabatic change in the amplitude of the betatron oscillations.3 Since the frequency

of these oscillations depends now on both the vertical and toroidal fields a slow change in either is

expected to alter the amplitude of the betatron oscillations. During acceleration we find, as in a con-

ventional accelerator, 3 that the oscillation amplitude decreases as the vertical field increases. If one now

considers removal of the toroidal field prior to beam ejection, we find that, as long as the toroidal mag-

netic field is much larger than the vertical field, the beam motion will describe orbits of increasing

amplitude as the toroidal field is decreased. Once the toroidal field becomes comparable to the vertical

field, however, the motion becomes more complicated and the betatron oscillations no longer continue

to increase in amplitude. We find that, by careful choice of field strengths, the ratio of the betatron

oscillation amplitude before acceleration to the amplitude of oscillation following complete removal of

the toroidal field can be adjusted to be near one.

In the following analysis we assume "perfect," i.e. azimuthally symmetric fields. By neglecting the

possibility of azimuthal variation in the self fields (due to beam bunching or kinking) we omit here

consideration of a variety of beam instabilities that may occur;4 by neglecting similar azimuthal varia-

tion in the applied fields ("field errors") we neglect the effects of orbital resonances. These will be

addressed in a separate report.5

2
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11. EQUILIBRIUM RADIAL FORCE BALANCE

The geometry of the modified betatron is shown in Fig. 1. The field configuration is that of an

ordinary betatron with the addition of a toroidal magnetic field, Bo0, here taken to be positive and con-

stant across the minor cross section of the torus. We consider an electron beam of circular cross sec-

tion, as shown in Fig. 2, with center located at (r., z,) - (ro + Ar, Az) where ro is the equilibrium

radius for the center of the beam at which the electric, magnetic, and centrifugal forces on a particle at

the center of the beam are in balance. We shall take ro to be the major radius of the accelerator

chamber. In the absence of self field effects radial force balance requires the electron circulation fre-

quency at r - ro, z - 0 to be given by

9o - 11:o = eBzolm-oc (no self field effects) (I)

where B:0 is the value of the applied vertical betatron field at the location of the orbit, yo is the usual

relativistic factor, e (>0) is the magnitude of the electron charge, m is the electron rest mass, and c is

the speed of light.

Self field effects will modify Eq. (1) however. A nonneutral current ring produces both a zero

order vertical magnetic field and a radial electric field. In general, for a reference particle at r = ro, z =

0, radial force balance requires

-yorofoj2  E,1o) + irook:o) (2)

where E,(° ) and 8!0) are the zero order fields at r - ro, z - 0. From Appendix A, Eqs. (A-25c, 26c,

26d)

b2B!O) - B.0 - ,r b oe' _1B(3)

r0

ii) - ro~ 1E (4)

where the notation is defined in Appendix A.

The terms proportional to I& in Eq. (3) and 1E in Eq. (4) are toroidal corrections to the self fields

of a cylindrical beam. They represent "hoop stresses"- self forces on a nonneutral ring of current

3
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which act to expand the ring. Since we do not attempt here to construct a consistent equilibrium for

the beam we leave 1a and 1E arbitrary in the analysis below since their precise values depend upon the

particular distributions of charge and current in the beam. Still, one expects the leading order loga-

rithms in the expressions for 1B and 1E, Eqs. (A-27,28), to be correct.

Using now the zero order fields, Eqs. (3,4), in Eq. (2) we may write the condition for radial force

balance as

I1+  __l~~o2 _ zo~ + _LS2

+ 1 I0 __ 1E - 0 (5)
Y o Yo yr

where

1 01 2m 1 (6)

Yol 1 mcj 4 c2

and where Wb is the beam plasma frequency, (4irnoe2/m'yo) 1 2. Here and below (1z0 retains the

definition assigned to it in Eq. (1).

Equation (5) is a quadratic equation for the circulation frequency, Oo. The solution which

approaches 0,0o as v/, 0 - 0 is, to first order in /yo:

aI 'E + iJ (7)

where a - floro/c. Self field effects, represented by the v/, 0 term, are seen to reduce the single parti-

cle circulation frequency below that expected for a zero density; the correction term can be significant

(20-30%) in presently contempreted devices. The general result, Eq. (7), will be needed below in the

derivation of the first order equations of motion.

III. FIRST ORDER EQUATIONS OF MOTION

In this section the equations governing the motion of a beam and motion of an electron within

the beam are obtained and discussed. We shall consider in detail only motion transverse to the toroidal

magnetic field, assuming that all fields, both self and applied, are independent of 0.

4



41

NRL MEMORANDUM REPORT 4687

The equations of motion for a particle in the fields of (A-25, 26) to first order in the displace-

ments from the reference orbit (r0, 0), are derived in Appendix B. They are

r1 + - , + 2o 1 - n* -  + IE+ 2 1 - 8r + a J

- Z +B0  z floo0i1 + 20 0 ~ ±1~2E l (8a)
2my-/c .Vomro I )1o0 ' j

+ 1 -0o + fl 2 nz 1 - n2 1 8z + ro I

)1 o z a2

- Lm--ri - flooil (8b)2myo c

where

r,= r - ro = Ar + Sr

Iz = z = Az + 8z

~)10 a2  (f
=s wb2/12vyfl 2 01

flo - eBoolmyoc

and where P,1 is equal to the canonical angular momentum of the particle at (r, z) minus the canonical

angular momentum of the reference particle at (r0 , O), to first order in small quantities. It may be

shown, using the definition of P,, P, r ny V# - !A, that

P - myorol ViY3 - 11:0"lir, (9)
V o a

2

where V, = V.- Vo.

As they stand Eqs. (8a) and (8b) are not easily solved since, before they can be solved for the

coordinates of a particle (r, . z1 ) the beam position (Ar, Az) must somehow be known as a function of

time. However, a set of consistent equations for beam and particle motion may be obtained by per-

forming an ensemble average of Eqs. (Sa,b) over initial particle coordinates and velocities. Denoting

5
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such an average by brackets it may be shown that, as long as the beam is assumed not to kink (Ar, Az

independent of 0), we will have

<rl> - Ar, <Sr> - <Sr> <8r> - 0 (l0a)

<zI> - Az, <8>z> - <iz> <iz> - 0. (10b)

Upon performing this averaging procedure on Eqs. (ga,b) we will obtain equations governing the

motion of the center of the beam. These may subsequently be subtracted from the original, unaver-

aged Eqs. (8a,b) to obtain equations governing the motion of a single particle within the beam. Both

resulting sets of equations may be summarized by the following single set:

1 ++ ooY + F (la)

.+ (2y- - oX -2 OX (01 b)

where the various quantities appearing in Eqs. (1 la,b) are defined in Table 1.

Table I - Definition of Quantities Appearing in Equations of Motion, Eqs. ( la,b).

Beam Equations Particle Equations

(x,y) yjI 2(Ar, Az) Y012 (8 r f8z)

W2 (ifo, 2  
Il - nV n,, o -2L - 7" 1- r E+2BJ-- O i

2o I +'- o -L 2 I +II -L -o

,o l "- "r.,aol, -. 1

2O o 4 -Y -yo 4 o

F 0< i flO1P -<P0>]--- -
Smy, rmor o+o , "11 i - , 2 I-+2 -2

6
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Equations ( la,b) are our basic starting points for the analysis to be presented below. In the fol-

lowing sections we will derive and study the WKB solutions to Eqs. (lla,b). First we make a few

remarks on the equations themselves.

The term proportional to x on the left hand side of Eq. (Ila) and the term proportional to y on

the left hand side of Eq. (1 Ib) represent radial and vertical focussing forces respectively. In general the

coefficients of x and y in these terms are not equal which suggests that an initially circular beam may

not remain circular. The value of n which makes these terms equal (the value required to maintain a

circular beam cross section) is

nc= I -i /e +al (12)

which depends on yo and therefore on time. In what follows we will leave it arbitrary, though we shall

assume implicitly that its value is close to nci. This is necessary for self consistency since we obtained

the beam self fields Eqs. (A-26) assuming a circular beam cross section.

In the case of constant fields Eqs. (I la,b) are elementary. For this case we have

(x F /w 2 4 (.,W ?2 j721  ~( 3

l,( I + j IC, I /e(3

where the eigenfrequencies (frequencies of betatron oscillations) are given by

i I . .2 I" 2 + " 2 0 "t [ ( 2 " " 2 + " 2 0) 2 - 4 2 2 a 2 J / 2 1 1/ 2

(U L ±j. + XAJ y 610o ± YW~ (14)12

and where the CJ, j = 1, 2, 3, 4 are constants.

Stability conditions result in the usual way by requiring w2 > 0. We postpone examination of

these conditions, however, until the following section. We note here only that for values of y above a

value dependent on geometry (rba.ro, n) but not on beam density, the self field contributions to W 2 and

WY fall off as yo , rather than y0" . For whole beam motion the value of y at which the "/'o terms

become comparable to the rb2 n,1a 2 term can be modest (-y - 10) for typical laboratory parameters

(rb - 1 cm, a - 10 cm, r0 - 100 cm, n - 0.5).

7
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The particular solution in Eq. (13) represents physically for a particle motion a first order radial

shift of a particle which, while located initially at the reference orbit (ro, 0) does not have the correct

energy to be maintained there by the local vertical magnetic field. It therefore moves in or out slightly

depending on the sign of the energy mismatch. If, however, the radial focussing forces, represented by

WX2, happen to vanish the behavior becomes secular (no equilibrium radius exists).

The solution to the homogeneous part of Eqs. ( lIa,b) also becomes secular when W 2 - 0. In

fact, when --- 0 and o . (n n), the point 0 = 0 corresponds to a turning point (transition

from stable to unstable behavior) in the WKB solution presented in the next section. Since W4 for par-

ticle motion will pass through zero during acceleration, it becomes important to examine the behavior of

the solutions to Eqs. (lla,b) for time dependent fields. In general, for slowly time varying fields, a

numerical solution to Eqs. (I la,b) over the entire acceleration cycle is prohibitive since the numerical

integration time step must be small compared to f-il which in turn is extremely small compared to

typical acceleration times. An explicit solution for this case is therefore essential.

IV. MOTION OF BEAM IN SLOWLY VARYING EXTERNAL FIELDS

A. Stability Considerations

If the coefficients of the derivatives of x and y in Eqs. (I Ia,b) are slowly varying during a period

of a betatron oscillation, the equations may be solved by the WKB method. (See Appendix C.) To

leading order the solution is

4 11 2 (w..2)1/2 Ie + fd' dt' FW) (15)
Jd' I /1K

where the eigenfrequencies are those given in (14) in which now all quantities may depend on time,

=, [ 1(w + W,2 + n 2)2 - 4,, 21/4 (16)

and where the kernels K(,(tt') and K,(tt') are given in Appendix C. The As, j - , 2, 3, 4 are con-

stants in this approximation.

8
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This solution, Eq. (16), is valid far from any turning point, i.e. where any wj vanishes. Turning

points will occur if o o4 =m 0 and if w o. (See below.) Initially we shall confine attention to a

cold beam (no longitudinal momentum spread) for which the particular solution in (15) vanishes ident-

ically. Later we shall comment on the effect of temperature.

The solution is unstable (exponentially growing) in time for such times that lm(w,) < 0 for any

j. Unstable behavior will occur therefore whenever either of the following conditions is violated:

w .W2 > 0 (17a)

W2 + (02 + flI 0 > 2(cu2(0?)I/2 (17b)

For n = ncir (WX ' =W,') inequality (17a) is trivial and (17b) gives the simplified stability condition:

0. 0 > max(0, - 4W,,2) (18)

If n ;d no r then both conditions (17a,b) must be simultaneously satisfied for stability. Condition (17a)

in particular cannot always be satii#ied At injection n, is typically quite large and both (02 and &) for

particle motion (and perhaps for beam motion) are negative. During acceleration, as yo increases it

decreases (it, - y 3 ) and &a4 and W 2 change sign (for different values of yo, if , ;d ic.,) an instability

"gap" therefore exists while w 2 and w 2 have opposite signs.

It is important to point out that w 2 and w 2 for beam center motion (Re: Table I) may start out

and remain positive throughout the injection-acceleration cycle while w2 and w2 for particle motion

change sign. We recall from Table I that the small quantity (rb/a) 2 multiplies it, in the expressions for

UP and w 2 for beam center motion but not for single particle motion. Therefore unless a, is extremely

large initially, beam center motion will remain stable.

The inequalities Eq. (17a-b) are illustrated graphically in Fig. 3. The stable regions of the

I 0 12, [i-x01 plane are those shaded regions I and 1 in the figure. After injection but before

acceleration both I and Iw for particle motion are negative and in region 1. In this regionI n~0o I

the toroidal magnetic field is essential for stability (modified betatron regime). Following acceleration

9
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I °) 2ad W 12

both 1 and -- are positive, i.e., in region II in which the toroidal field is no longer required

for stability (conventional betatron regime). Only by passing precisely through the origin (e.g., trajec-

tory b in Fig. 3) can instability be avoided altogether. While the size of the instability gap does not

depend on the magnitude of B90 the value of Im(wo) in the gap does and is inversely proportional to

B,0 . Therefore by choosing a sufficiently large toroidal field it should be possible to pass through the

instability gap safely (within a few growth times, or less).

We may be quantitative for a case in which toroidal effects may be neglected: When Eq. (17a) is

violated and if fl 2 >> k11, IWI I then for the unstable mode, from Eq. (14),

Im .j- X Y (19)

which has a peak value, assuming only -yo and not B9o is changing in time, of

on - 1/21 =-. (20)

If

dt |m ( j  f" __o <

f: m <1 (21)
'o

where t, and 12 are the times at which the instability gap is entered and exitted, respectively, then one

expects that the transit through the gap will not significantly disrupt the beam- Eq. (21) translates into a

constraint on v'o:
__ ~ B.o

._oj >> -M n°oo-(n - 1/2)2. (22)

If the acceleration is fast enough to satisfy Eq. (22) particle motion will be essentially unaffected by

passage through the gap. It should be possible to choose a machine design (i.e., a sufficiently large

toroidal field and a field index close to 1/2) so that Eq. (22) is well satisfied.

The instability which occurs while w 2( 2 < 0 has an interesting dynamical origin. Let us consider

the equations of motion, Eqs. (I la,b), taking F - 0, and taking the external fields to be constant in

10
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time:

x + Wx _ fl,- (23a)

+ 0y2y _ _ fls (23b)

These equations are just those governing the motion of a particle in an effective electric field

Eea- = -M wx (24a)
e

EeC- = m o2y (24b)
Y e -Zy

and a magnetic field B00-,'o. Converting to polar coordinates p, 0b we have

Eel- = _.n ptw. cos2  j, + (0.2 sin 2 461 (25a)
e

Ecff - -p [W 2 - W21 sinbcoso. (25b)
e Y X

The particle behavior may be understood as follows. Let us assume that it > 1/2, from which it fol-
lows that c. 2 > W 2 always, and let us consider first the modified betatron regime (W 2 < 0, w < 0).

E~e " in this regime is everywhere negative thereby giving rise to a clockwise E x N drift, assuming Bo is

positive. Ee fr, which is much smaller in magnitude than E ef , gives a radial drift of alternating sign as

the particle moves from quadrant to quadrant, thereby producing an elliptical orbit. Stable motion is

established by balancing the outward radial electrostatic + outward centrifugal forces against the V x

confining force.

In the conventional betatron regime wu2 > 0, W2 > 0 and the sign of E ef is reversed. Azimuthal

particle drift is now counter-clockwise and the major axis of the elliptical orbit is rotated by 900. Stable

motion is achieved by balancing the inward radial electrostatic force against the centrifugal force, the

toroidal field is no longer needed.

In the instability gap EIe has zeroes at polar angles given by

COS 2 40"= I6-0 (26)

at which points the azimuthal drift velocity vanishes. The radial drift velocity, cE ,,T/B, cannot also

vanish at the same point. Consequently the particle drifts radially, with increasing velocity, since

II
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E~f r - p, at the angle 40, as long as &2(a < 0. Increasing the toroidal B field, thereby reducing the

radial drift velocity, reduces the growth rate of this instability, a fact reflected in Eq. (19).

Typical orbits during transit of the instability gap are illustrated for a simple case in Figs. 4 and 5

in which results of a numerical integration of Eqs. (I la,b) are plotted. In Fig. 4 condition (21) is not

well satisfied. The dramatic drift direction reversal and instability are evident. In Fig. 5 condition (21)

is well satisfied (n is near 1/2); particle motion is virtually unaffected, except for the reversal of drift

direction, by passage through the gap. The two graphs, in Figs. 4 and 5 differ only by the value of n

used; all other external parameters and total integration time are identical.

So far no mention has been made of the effect of temperature, the inhomogeneous term in Eqs.

( la,b), on particle orbit behavior in or near the instability gap. Particles having an energy

mismatch-either too little or too much energy to be maintained at the reference orbit by the local

vertical field-will seek out their new equilibrium orbits about which they will execute betatron oscilla-

tors. Secular behavior is expected, as discussed earlier, when (0 2 vanishes.

The effect of energy mismatch on a particle orbit is illustrated in Fig. 6 where the particle of Fig.

5 has been given an energy mismatch of

Pal<0 > - <Yj> - 0.10.mro¢

The effect is twofold. The orbit center shifts slightly outward and the amplitude of betatron oscillations

following passage through the instability gap has increased by a factor of -35 over the zero mismatch

case. Such a large expansion of the particle orbits cannot, in fact, be reliably computed using the

linearized Eqs. (1la,b) used here. One non-linear effect in particular, namely the reduction of beam

density during the orbit expansion, will clearly speed the passage of a particle through the instability

gap. (Recall that n, is proportional to density.) Due to this density reduction the actual degree of orbit

expansion to be anticipated in a real device is likely to be significantly less than that seen in Fig. 6.

Still, these calculations suggest that a fairly cold beam will be required for successful acceleration

through the instability gap. Poorly "matched" particles are likely to be lost as w 2 goes through zero. It

should be pointed out as well that a strong toroidal field greatly reduces the effects of energy mismatch.

12
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The computer runs necessarily employ a very modest toroidal field (600 gauss in the case of Figs. 4-6)

due to time step considerations. A stronger field, by further restricting radial motion, is expected to

improve the confinement properties of a warm beam.

B. Adiabatic Behavior

Let us next briefly consider, using the solutions to the equations of motion, Eq. (15), the effects

on the particle orbits of the removal of the toroidal magnetic field. The toroidal field may need to be

removed in order to facilitate beam extraction though this may not be essential. Let us assume that Eq.

(15) is valid throughout the acceleration cycle, i.e. that (, and W? pass through zero simultaneously

and that the solution to the homogeneous equation (the sum in Eq. 15)) dominates the solution. This

is certainly true for matched particles (P, = <P,,> = 0) when n = 1/2 and when toroidal effects may

be neglected 6,1y << 1). One may show, using Eq. (15) for such a case, that for beam center motion

in either the fast or slow oscillation mode

(r) 2 + (A)2J, 11- a-- " o 4+ 1 2

(,Ar)2 + (Az) 21, - a 2  
- 4 (27)

while for particle motion about the beam center6

[(8r)2 +(.), 18 -1+ /B"2 0 '1(
V80r2 + (8_)21I I 1} o + fl I B2

where the subscripts i and [correspond to any initial and final states. The latter expression, Eq. (28),

may be inte'preted as the fractional change in beam cross sectional area, Note that for large B, the

area of the orbits as expected.

Expressions for these ratios in the case that toroidal effects are not negligible and it 9 1/2 may be

obtained from Eq. (15). The expressions are complicated, however, and will not be cited here.

13
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As a numerical example we consider a 1 kA beam of I cm initial radius in an initial state

corresponding to y, - 7. Boj - 120 g, B#,. - 1.5 kg and a final state with yf- 100, B201 - 1.7 kg,

and B001f - 0. In such a case Eq. (27) gives for the orbital area ratio a value of 0.63 while Eq. (28)

gives for the ratio of beam cross sectional areas a value of 0.60.

We conclude that it should be possible both to accelerate the beam and to remove the toroidal

field to facilitate beam ejection without causing either the beam orbit or individual particle orbits to

expand without limit.

V. CONCLUSIONS

The beam in a modified betatron can be stably confined both during the acceleration phase and

dur'ng the subsequent gradual removal of the toroidal magnetic field prior to beam ejection. As the

beam is accelerated, however, unless very special conditions are satisfied, a region of instability will be

passed through; however if the time of transit through this instability gap is small compared to the time

specified in Eq. (20) the net effect should be small.

As the toroidal field is removed to facilitate beam extraction following acceleration no further ins-

tability gaps occur but the magnitude of the beam betatron oscillations will change adiabatically. By

arranging that the ratios, Eqs. (28,29), be near one, one expects the beam to be well behaved during

the removal of the toroidal field.

It should be remarked however that changing the toroidal field changes the "tuneof the betatron

which, in general, will necessitate the passage through orbital resonances as the toroidal field is

removed. These resonances, due to the periodic encounter by a particle of a field error or "bump"l are

currently under investigation. It is anticipated that a condition governing the minimum speed with

which Be must be removed, expressed as a function of the magnitude of the field error, will be

obtained.
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Appendix A

FIELDS IN THE MODIFIED BETATRON

In this appendix we calculate the fields seen by a particle in a modified betatron. The particle is

assumed to be close to the axis of the torus, that is, the coordinates of the particle are taken to be

(refer to Figs. I and 2 in the text)

(r~z) =(r 0 + Ar + Br, Az + 8B-)

and all fields will be calculated to first order in Ar, 8r, Az, and 8z. Fields will be given in the (r, 0, z)

coordinate system of Fig. I and all will be assumed to be independent of 0. Superscripts a and s will be

used below to denote applied and self fields, respectively.

Part I (Applied Fields)

Magnetic Field

The usual weak focussing betatron field has r and z components. The z component is taken to

behave near r0 as

B~e = Bo(rolr), = B,0[I - nAr + 8r) (A-1)

where B:0 depends only on time and n, taken as a constant to this order, is the so-called vacuum field

index. The radial field is obtained by requiring (V x )= 0 and B,(z - 0) - 0 (making the z - 0

plane a plane of symmetry). The result is:

B - (A-2)

I ro I

The applied toroidal field generally falls off as r- across the minor cross section of the torus:

B,0 B.o I Arr+8rj

16
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where Bo depends only on time. However, in the equations of motion BO multiplies only ; and i terms

which are already first order. Therefore the gradient of B. does not enter the linearized equations of

motion and we take only the zero order value,

B@" Boo (A-3)

Electric Field

All applied electric fields are inductive. The '-Jq,!W, -'t+ric field is governed by the changing

central flux and is taken to be a specified function .

E - :1 (A-4)

E, is negative for electron acceleration with Bo pbsiUve.

Changing the toroidal magnetic field, B, will indu( e a poloidal electric field, the r and z com-

ponents of which are easily found:

E,'= -- Buo(Az + 8z) (A-5)

- cBO(Ar + 8r) (A-6)

where a dot indicates a time derivative.

Part If (Self Fields)

Since we neglect beam diamagnetism and the possibility of a change in self flux due to time vary-

ing beam current we take B. = E= =- 0. it remains to calculate the r and z components of the beam

self electric and magnetic fields.

Consider a beam circulating inside a perfectly conducting toroidal chamber of circular cross sec-

tion as shown in Fig. A-I. (The beam displacement is exaggerated for clarity; we will assume A << rb).

The chamber major and minor radii are r0 and a respectively. The beam major and minor radii are Rb

and rb respectively. We must calculate the fields inside the beam (p < rb), assuming the chamber is a

perfect conductor. To proceed we define a scalar potential 4(p, q) and a magnetic flux or stream func-

tion *P(p.) rA, where A, is the usual vector potential. The equations for 4 and 1 are

17
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p-[ l 2  - ( o A-7)
Co * sin , *

i- + 4ireno(p, ) - (A-7)

P + p 2 0 2  a#c Rb + cP sCo

where no, the beam number density and J9, the beam current density, are assumed to have been

specified. Here we shall take both no and J9 constant, independent of p and .

The boundary conditions on 0 and W are the same; they both must vanish at the surface of the

chamber, specified by

p = a - A cos (j - -0), (A-9)

correct to first order in A/a.

IScalar Potential and Electric Field

The general solution for 40, including the first toroidal correction, is

4 o+ q I-21rb2+ qp. cos0+ A-P-sin0+ B-P-cos¢ p < rb
S , b r l rb rb

bo - 2q lnplrb + npr b cos , + A' 2 - + C j sin
Rb rb P

+ B'-- + D'j cos p > rb (A-10)

where q - enoirrb and bo, A, A'. B', C', and D'are constants.

Applying now the correct boundary conditions both at the beam surface and the wall determines

all of the constants:

00o - 2q lna/rb (A-1110)

A -A'--2q -L rb sin (A-lib)
a a

B B q r 2qa r cos# (A-ie)
4Rb a 2  a a

18
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C' = 0 (A- Id)
D' -q r (A,-lle)

4 R"-

Using this result in Eq. (A-10) we may calculate the r and z components of ES inside the beam, to first

order:

E~s = Cos + sin4ap P 80

_L 21
= q 8r + - -Ar + In (A-12)

a2  Rb rb

AP= - - sin 1 A! cos 0
ap p 84

_L 8z + a2 (A-13)

where (8r, 8z) : p (cos 0, sin '1) and (Ar, Az) A (cos 0, sin b).

Magnetic Flux (or Stream) Function and Magnetic Field

The general solution for 4r, including the first toroidal correction, is

3 ._ 2 cos 4 + A -  sin + B---cos 0 P < rb*0 + -4 Rb r2 rb rb

To- 2 Q Inp/rb - - b lnp/rb cos + A - + C' sin4R b rb P

+ I~_ + jCOS4 P > rb (A-14)
pb j

where Q - rr 2JRb/c = - irrenooRb, 13o - V.o/c, and Po. A, B, A', B', C', and D' are constants.

Applying the boundary conditions gives

* 0 - 2Qln a (A-iSa)

A - A' - 2Q- - sin 0 (A-15b)
a a
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8B,'+Q0"-

a a rbR b R 4R AIc-- C, os, + Q.- ,. In. -- + ".Q-_ !:-- _ Rb '- ,,.a (A-1sc)

r'- 0 (A-15d)

t= - (A-15e)
4 Rb

The resulting magnetic field, to first order, is

if 1' 81' cos4 I
B= - - p sin- m + -

r Op 8
1 21

= - 21reno lo I8z + a2z (A-16)

B! 7 Cos 4 F sin
r 8 0 P J

-2renoo 8r + 1 ir - -b In-- + Ill. (A-17)
IS a2  2Rb rb

If the circulation frequency, bo, rather than the current itself, is taken to be constant across the

beam (current - r) then it is straightforward to show :hat In- - + I in Eq. (A-17) is replaced by

a rb

In -
+ 2.

rb

If the magnetic field of the beam has diffused completely through the wall then the field sur-

rounding the beam is most directly calculated using the free space Green's function:

(- fd i,---d*Yom (A-IS)

If J- J40 is constant across the beam and J. is independent of 0 then A- ,I. where

A(r, Z)"- J, Rb+rb 2df 2 [p(r 2 Co of.

Ci" L b cb Jr*- r'2 + r'2 2rr' cos ' + (z - Z')2

zb(r) lr, - (r' - Ra)21 /2. (A-19)
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The integral over 0' may be expressed in terms of the complete elliptic integrals'

± f#Rb +, I ~r'
A, = - rdr' f_.,dZ - + 1(1 + -I)K(-m) - -r(-m) (A-20)

where

4rr'
iMr (r - r') 2 + (z - z')2

In the beam interior m is large. Using the asymptotic expansions for K and E one may show that

(I + 2)K(-m) - 2 -E(-m) M- 1m-1I2(Inm + 41n2'- 4). (A-21)
m m 2

Using Eq. (A-21) in Eq. (A-20) the resulting integrals are elementary. The result, for the vector

potential inside the beam is

Ask= 2 I !nj_ + I - p2/rb + -P- cos 4-- In b + 3 (A-22)

where/ 7rr,, from which it follows that the fields inside the beam, to first order in p, are

B=I 21 -- sin 4 (A-23)
C t

= rb In 8Rb -2. (A-24)

We may summarize all of the foregoing results as follows:

The applied fields are,

B,9 - nB. AZ + 8Z (A-2Sa)
r0

Bo - Boo (A-25b)

& - B:o0 1 n Ar + 8r (A-25

Ei- -2c 80 (Az + 8z) (A-2Sd)

E# - E#o (A-2Se)

'Handbook of Mathematical Functions, M. Abramowitz and I. Stegun, eds. Dover Publications, ch 17.
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= Bo (Ar + 8r) (A-25f)

where B o, BO0, and Eo are taken to be prescribed functions of time.

The self fields are:

B= - 27rnoe o0 8z + rbAzj (A-26a)

B= 0 (A-26b)

B 27r noeg o 8r + -Ar - - r/- (A-26C)

Ers= - 27r ne 8r+ -2A r + - b EI (A-26d)

E = 0 (A-26e)

2)
2ne + (A-26f)

where 
I a

In a + 2 if circulation frequency, 0, is constant across the beam
rb 

(A-27)
In a + I if current density is constant across the beam

1E  In -_- if density is constant across the beam. (A-28)
rb

For times long compared to the time it takes the magnetic field to d'ffuse through the chamber

wall the result (A-24) shows that one must replace a in the logarithm in the definition of I by (8 role)

=z 2.9ro. This suggests that fields in an actual device may have to be programmed in time to compen-

sate for this extra change (reduction) in B., in order to hold the beam in place.

22
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Appendix B

LINEARIZED EQUATIONS OF MOTION FOR A PARTICLE IN THE MODIFIED BETATRON

In this appendix the equations of motion for a particle in the fields (A-25) and (A-26) are

obtained, correct to first order in small quantities.

The complete equations of motion are

d('i) - /r _ E, + l (r B- - B,) .(B-I)

r di "

d( o) eE + -- (iB8 - r4Br)f. (B-3)
at C I." c

We consider first the linearization of Eq. (B-2). This equation has an exact first integral, assum

ing the fields do not depend on 0; it is the canonical angular momentum

P0 r irnryi - £ AV] (8-4)

We now write all quantities Q as Q = Q0 + Q, where Q, << Q0 and Q0 refers to quantities

evaluated at the reference orbit (r, z) (ro, 0 ). Defining V.- ro it is straightforward to show from

Eq. (B-4) that

V P1 rl _0 - _ (B-S)
myo ro  V2 ro

where

k!00) - B.-o- 7rn 0ejoS 0 /

and where we have used yI - V"yd V,1/c 2. Now, using the expression for io in Eq. (7), one obtains
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PI + - -- zoIE (B-6)
myvr- Y -t o a

where

Yo Yo jb 2 4 c2

2 = 41rnoe2/myo

a = fl2 oro/c.

The expression Eq. (B-6) will be needed next in the linearization of the radial equation, (B-1).

Carrying out a straightforward linearization of Eq. (B-i), using the zero order fields from Eqs. (A-

25b,c) and Eqs. (A-26c,d) gives

e JE, + _ -- Bzlj + flOOI -
mYo c Yo 0

+ V-Ll-1 - E + 1,911+2 V, 
+

.y 1/ a (B-7)

where

000 - eBeodmyoc.

Using now Eq. (B-6) and keeping terms only to first order in v/vo and using Eqs. (A-25c,d) and

Eqs. (A-26c,d) to write

e IL,, + V00o I j' !b rb2
m-- E+ 2 I = 2-Z + - 8r + - + nroIzor! (B-8)
MY0  c 2myoc 2yJ( a2  +n 0 1 r

we obtain our final result for the radial equation:

+ - + l I - n - -E--10 - n)-L IE + (2 - n) /a rI

Yo 201 v2 J

eBoo rb
2my + flooil + n'fl42&r + _2 A- 2 - 1 +o + + ,~ .+ .....

2yocr Vo 02E
+ 110 ol 11 + y6-2 JE + 181 (B-9)

where n, o/2yjf)f2o is the "self field index."
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The analogous linearization of the z equation (Eq. (B-3)) is completely straightforward, using the

fields (A-25a,b,f) and (A-26a,b,f). The result is

j,~ ~ ~ ~ I + I Ol+ f eB0  I' IYo 'Yo 2I 1 1

25
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Appendix C

WKB SOLUTION OF EQUATIONS OF MOTION

The linearized equations of motion are given in the text, Eqs. (lla,b). Below we shall obtain

first, an approximate solution to the homogeneous version of Eqs. (11a,b), assuming that all

coefficients are slowly varying. We will then give the solution to the full, inhomogeneous equations.

The homogeneous equations are

+ (a2x - ft + 00y (C-la)

+ fI ) (C-Ib)

All coefficients, w,2, (0 , and f2o will be assumed to vary significantly only over a slow time scale.

To carry out a formal asymptotic expansion then we define

T = I/A

x" + A2Wyx - Afly' + 'flo (C-2a)

2y" +AaY -A flox'- 2foX (C-2b)

Now writing

x - a1 (,r \)eI"f.( ' )d?'  (C-3a)

y - a2(? ,)e " fe'P )d'  (C-3b)
we proceed to express a, and a 2 in formal asymptotic series:

X1r ) _.jQT (C-4a)
al': ' ,,-o aDn '

a2 .; (C-4b)
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We must now find the a1I,, a2 ,,, and w.

Substituting Eqs. (C-4a,b) in Eqs. (C-2a,b) one finds the leading order (k) result

(C02 - t, 2)ao - i(0flooa2o - 0 (C-5a)

isaQ~a1 o + ((01 - a, 2)a 2o - 0 (C-Sb)

from which it follows that w, must be one of the four quantities:

2 +W 2+ n2 ± W2+ (02 + 2- ~~a112 11/2
W- ± + + 20 ± I 2. (C-6)

The next order (0) relation may be written, after some manipulation, as

2(0 4 a'20 + 1("' 1 W2 ' f 1o
2,- 0 2 w0 flooI aOo

S-no + (. - .)a',o + -'.o + &) , Io. (c-7)

Using Eq. (C-5a) or Eq. (C-Sb) and Eq. (C-7) an equation for just alo (or just a 20) may be obtained.

The solutions are

alo = Aw(-1 2((2 - ( 2)1/2(,2 + W2 + 2 ) - 2( 2)'12  (C-8a)
Y .V2w(-a

a 20 = Aw-/ 2 ((02 - ,)"1/2 ( ,2 + W2, + fA~o - 2W2)-1 / 2  (C-8b)
where A is an arbitrary complex constant.

Using Eq. (C-Fab) and the definition of w, we may write the leading order WKB solution to Eqs.

(C-la,b) as

A, J(a 2 - W,2)I/21 i~d
JX _[(.2x + (.2 + . 2012-_ 4w0,2 - 1/4-, 40/- -(0 Y 0)/ Jc

Xi - 00, ~ 2
- a2,j~1/2 (W - W,2) /2 (C-9)

where the sum extends over the four values of cu in Eq. (C-6) and where the As are constants.

This solution is expected to be valid as long as w, , w., and fl o are slowly varying compared to

any w,0, i.e.,

In 6 << 1wj.1, j - I. 2, 3, 4,
dr7
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where i is o,, wiy, or 00. The solution is therefore expected to fail when ai, z 0, that is, near a

turning point. From Eq. (C-6) this can happen when

S2 2 _ 0. (C-10)
Equation (C-9) is bounded, however, if in addition woi2 = - 0. Breakdown of Eq. (C-9) (and a tran-

sition to unstable behavior) occurs only if (Uxwy X a W .

Once the solution to the homogeneous equations have been found the solution to the inhomo-

geneous equations follows by the usual variation of parameters or some similar method. Writing four

independent solutions to the homogeneous equations as

(j) j 1 1, 2, 3, 4 (C-l)

one finds in a straightforward way that a particular solution to Eqs. (1 la,b) in the text is given by

=,' dt' Kx, t:)} FWt) (C-12)

where

0, 0 -- Jkl (t) Xlk)(t)y(f t) ( m) (t )

K(t,t') = - -j Ekm Y(j) x(M (t') Y ( 1( tW) W (M)(t')

W - Ejklm XJ)(t) Q () ) (I)t) ( 1 m)(t)

and where the summation convention is understood. The Wronskian W is a constant, independent of

time; its value is determined once a choice is made for the x~s ), y(i).
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Iz

r

ZO

Fig. I - Cutaway view of modified betatron geometry
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PAR TICULAR

MINOR CROSS SECTION
OF TORUS

Fig. 2 - Coordinates of beam and particle in modified betatron. Center ot beam 1 is (' G: ) i + A1r, 4:11 Electron is

at (r.:) (ro + A1r + hir. A~: + 8:).
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2- 2

( y/(eox ///o

Fig. 3 - The pln.Shaded regions are stable. Trajectors a and c pass through unstable regions.

Only trajectories, such as b. avoid all unstable behavior.
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1.0

FINAL
DRIFT
DIRECTION

PON

8z

-1.0 3r 1.0
Fig. 4 - Particle trajectory (8:z vs. 8r) in the modified betatron during transit of the instability gap. y' varies linearly in time from

7.0 to 16.1 in 2.414~s. 8.- 600 puss ,- Io 10cm a -10 cm. ,5 - Icm. n -0.33. ,,'y 8 .4 x 10-3at 1 0.
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0.3
FINAL
DRIFT
DIRECTION

PON

8z

-0.3-
-0.3 br 0.3

Fisg 5 - Particle trajectory (6: vs. 80) in the modified betatron during transit of the instability gap. All parameters are as in
Fig. 4 exc~ept n, - 0.51.
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10.0

REVERSAL

DRF

8z

-10.0[
10.0 Sr10.0

Fig. 6 - Particle trajectory (8z vs. 8r) in the modified betatron during transit of the instability gap, including energy mismatch.
All parameters are as in Fig. 5 except an energy mismatch or (P. <P. 1> )/mr 0c - 0.10 has been introduced.
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Fig, A-] Geomnetry for sell field calculIlion
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